Archive for the ‘Math Reasoning’ Category

10,000 Left Shoes

Wednesday, October 21st, 2009

Who would ever want to have 10,000 left shoes?

Well, here is a story that has stuck in my head for many years. I may be off on the specifics but I believe the just of it is true. And, if not, it could have happened or, in storytelling parlance, it’s plausible.

As I recall, in the mid 1960’s in Israel I read in the paper that a shipment of 10,000 left shoes had arrived in the port of Haifa from Italy. At the time, custom duty rates in Israel were extremely high, especially on such luxury imports. So the importer did not claim the shoes. Besides, what would he do with 10,000 left shoes? Stuck with this load, the custom office did what most custom agencies do with abandoned stuff, it auctioned it off. But no one had any use for 10,000 left shoes so no one made any bid. Well, eventually the original importer made a very low bid and the custom office was happy to get rid of the shoes that took space in its warehouse. So the importer got his 10,000 left shoes practically paying no duty.

A month or two later a shipment of 10,000 right shoes arrived in the port of Haifa and the same importer did not claim them because he did not want to pay the duty…

Surely, you have figured out by now the rest of the story.

Where is the math in this story?

It has to do with sets and how sets can be split, added up and rearranged. A pair of shoes is a set, a very useful set. It can be sold. 10,000 pairs is a set of 10,000 such useful sets. Splitting these pairs into 10,000 left shoes and 10,000 right shoes generates 2 sets containing 10,000 of useless shoes, which no one wants to buy. But then, whoever has both sets can recombine them to form the original 10,000 sets of sellable pairs of shoes.

Friendly Gifts/Favors and Mathematical Reasoning

Monday, September 10th, 2007

It is common among friends and relatives of professionals to expect a favorable treatment, that is, a discount or a freebie, when they need the service or product of their professional friend. And it is almost just as common practice for the professional to oblige with such an expectation. For example, if you have a friend who is a plumber, I dare presume that, when your toilet is plugged and you urgently need a plumber, you might call your plumber friend, ask his assistance and expect him to give you a discount or perhaps even a freebie. You may then reciprocate buying him a dinner or a bottle of wine but the value of this thank-you gift is much lower than the value of the service.

Or, say, your friend is an author who just published a new book. You probably expect her to give you a free copy of the book, perhaps even an autographed one with a personal dedication.

My question is this:

In mutual relationship, why it is the pro who has to favor you? Why don’t you favor the pro?

Consider the example of your author friend. Why should she give you a free copy of her book? Why shouldn’t you buy her book and pay double its price?

OK, I know, the bookseller can’t take a payment larger than what they sell it for but you get the idea. Beside, we can figure out a workaround this formal limitation. For if you truly like your friend and want to (a) encourage her writing and/or (b) encourage her publisher to publish more of her books and/or publish more books of this kind, then you can send the extra payment with an explanation to either the publisher or your friend the author. Or at least, buy the hardbound book at a full-price retailer, not a paperback at discounter, and then, when the paperback comes out, buy it too.

Where is the math here?


Think of positive and negative numbers and especially think of the duality between the positives and negatives. In this case, why the positive should be a discount for you and the financial negative to your friend and not the other way around?

This is a clear example how positive and negative numbers are often set by the relevant context. For example, if I owe you money, then, as far as I am concerned, my debt to you has a negative value while, from your perspective the debt has a positive value. Similarly, for pilots going up is a positive experience and ascending is indicated by positive numbers and descending by negative numbers. On the other hand, for a scuba diver going into the ocean depth is a most positive experience, so for her descending is measured by positive numbers, which also indicate the increase in pressure, while ascending is measured by negative numbers.

When I talk to students, teachers and others about negative and positive numbers, I like to say:

There is nothing negative about the negative numbers.